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Superconducting quantum circuits must be designed carefully to avoid dissipation from coupling to external
control circuitry. We describe a reformulation of dissipation theory based on a current-to-current transformer
model. We test this theory with an experimentally determined impedance transformation of �105 and find
quantitative agreement better than a factor of 2 between this transformation and the reduced lifetime of a phase
qubit coupled to a tunable transformer. Higher-order corrections from quantum fluctuations are also calculated
with this theory, but found not to limit the qubit lifetime. We also illustrate how this simple connection between
current and impedance transformation can be used to rule out dissipation sources in experimental qubit
systems.
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The quantum behavior of superconducting circuits has
been demonstrated by numerous experiments,1–5 and their
promise as quantum information processors6,7 is well-
established. These devices must be carefully engineered to
protect their quantum states from environmental noise, par-
ticularly that from control circuitry to which the qubits are
permanently wired. Environmental dissipation can generally
be described by spin-boson models8,9 or—more practically—
computed as being proportional to the real part of the admit-
tance Y���, the classical response of the circuit.10

Here, we reformulate dissipation theory by considering
decoupling to external circuitry as a current-to-current trans-
former, which gives a simple and physical method for calcu-
lating impedance transformation and the energy decay time
T1 of a qubit. This model is tested with an electrically tun-
able transformer that allows direct measurement of the cur-
rent transformation. Our experiment is similar to that dem-
onstrated previously in superconducting flux qubits,11,12 but
enables a somewhat better test for absolute agreement with
theory. The concept of current transformation is presented in
a general two-port model that has been extended beyond that
of a classical impedance transformation to include effects of
quantum fluctuations. Although this work does not directly
show how to improve T1, currently an important issue, we
illustrate how this general theory may be used to experimen-
tally rule out sources of decoherence.

A superconducting qubit is generally coupled to control
circuitry via a dissipationless element, typically a capacitor
or a mutual inductance. As shown schematically in Fig. 1,
the external circuitry is characterized by its admittance Y1���
�often 1 / �50 �� from a transmission line�, and the coupler
transforms this into an effective admittance Y2��� seen by
the qubit. From the fluctuation-dissipation theorem, dissipa-
tion is proportional to the mean-squared current noise. The
real part of the effective admittance seen at the output of the
coupler can then be calculated through a simple current
transformation

Re Y2��� = �dI2/dI1�2 Re Y1��� , �1�

where I1 is a current source applied at the input port, and I2
is the resulting current that appears across the shorted output

port �see Fig. 1�b��. This admittance leads to a qubit lifetime
�see Eq. 3.4 of Ref. 10� that is approximately equal to the
classical decay time T1�C /Re Y2��10�, where �10 is the qu-
bit transition frequency, and C is the qubit capacitance. Thus,
given an environment Y1���, the current transfer function
I2�I1� completely determines the dissipation seen by the qubit
through the coupler. When fluctuations in I1 produce no cur-
rent I2 in the qubit, the environment is decoupled. This
simple result holds not only for capacitors and inductors, but
also for more complicated nonlinear dissipationless couplers.

To test this idea, we measured the lifetime of a flux-biased
Josephson phase qubit as a function of the current bias
through a three-junction measurement superconducting
quantum interference device �SQUID�.13 The layout and
schematic of the phase qubit and measurement SQUID is
shown in Fig. 2. The operation of this device has been de-
scribed previously,14 and we repeat here only the relevant
details. The qubit frequency is tunable over a range of sev-
eral GHz by applying magnetic flux to the qubit loop. The
qubit state is measured by selectively tunneling the qubit �1�
state out of the cubic well of the phase qubit potential. The
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FIG. 1. Impedance transformation by a two-port dissipationless
coupler. �a� Qubit is connected through a dissipationless coupler to
environment, described by admittance Y1��� of the external cir-
cuitry. �b� The transfer function of the coupler relates current source
I1 across the input port to current I2 across the shorted output. �c�
The effective dissipation seen by the qubit at port 2 is transformed
by the squared derivative of the transfer function.
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tunneled �1� and nontunneled �0� states produce different
amounts of magnetic flux in the qubit loop, the difference
being about one flux quantum �0. The critical current of the
measurement SQUID is sensitive to this difference in flux,
allowing us to discriminate between the two qubit states by
ramping the SQUID bias and measuring the current when the
SQUID switches into the voltage state.

This sensitivity to qubit flux is only necessary during
measurement, and is in fact detrimental during qubit opera-
tion. If the SQUID is sensitive to flux from the qubit, then
the qubit is also sensitive to flux from the SQUID; noise and
dissipation in the SQUID circuit—in particular from the
shunt resistance Rs—will decohere the qubit state. We would
like to be able to modulate the SQUID’s flux sensitivity,
turning off the coupling during qubit operation, and turning it
on only for measurement.11,12 The three-junction design
makes this possible.

When bias current I1= Isq is applied to the SQUID, it di-
vides into the upper and lower branches of the loop. The
lower branch has a single Josephson junction with critical
current I0, whereas the upper branch has two larger Joseph-
son junctions each with critical current �I0. The total current
is Isq= IU+ IL=�I0 sin�� /2�+ I0 sin���, where � is the super-
conducting phase difference across the loop. The circulating
current in the loop is Icirc= IU− IL=�I0 sin�� /2�− I0 sin���.
This circulating current couples via a fixed mutual induc-
tance Msq /2 in each branch to the qubit loop, causing current
I2= Iq= �Msq /2Lq�Icirc to flow.

A plot of Isq versus Iq is shown in Fig. 3 for four values of
�. The SQUID and qubit are decoupled at points of zero
slope; these “insensitive points” exist for ��2. Away from
the insensitive point, the inductances become unbalanced
and the transfer function has nonzero slope, so that SQUID
and qubit are again coupled. When measuring the qubit, we
ramp Isq toward the critical current, turning the coupling on
and allowing the SQUID to discriminate between the tun-
neled and nontunneled qubit states. Because of unavoidable
variations in junction size during fabrication, we typically
design for ��1.7 to ensure that an insensitive point will
exist, yet not be too close to the critical current of the
SQUID.

The tunability of the phase qubit with flux allows us to
measure the transfer function of the SQUID. We first set
Isq=0 and find the qubit resonance frequency with
spectroscopy.13 When the SQUID bias Isq is set to a new
value, the circulating current in the SQUID produces an off-
set flux ��sq=LqIq in the qubit, shifting its frequency. We
then adjust the flux bias �� fb=MfqIfb to bring the qubit
frequency back to its original value. For the qubit frequency
to be unchanged, these two fluxes must cancel, and we have
Iq=−�Mfq /Lq�Ifb. By repeating this procedure for a range of
values of SQUID bias, we build up a measurement of the
transfer function Iq�Isq�, as shown in Fig. 4�a�. An alternative
method is to hold constant the �0�-state tunneling rate instead
of the resonance frequency, but we found that the resonance
frequency was a more sensitive probe of the qubit current Iq
and more immune to systematic errors.

Next we measure T1 as a function of SQUID bias by
applying a � pulse to the qubit and measuring the decay of
the �1�-state probability with time. As in the measurement of
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FIG. 2. Micrograph �a� and schematic �b� of the phase qubit and
SQUID. The overlap of the qubit and SQUID loops increases their
mutual inductance Msq, while their gradiometric layout reduces
their sensitivity to external flux. The flux bias coil couples to the
qubit to tune its frequency, but has negligible mutual inductance
with the SQUID. The shunt resistor Rs reduces quasiparticle gen-
eration in the SQUID when it switches �Ref. 15�. The qubit sees Rs

transformed by coupling through the SQUID. For the tested device,
qubit capacitance and critical current are 1 pF and 2 	A. In
addition, we have I0=2 	A, �=1.5, Ls=300 pH, Lq=720 pH,
Msq=70 pH, Mfq=2 pH, Rs=30 � and Cs=1 pF.
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FIG. 3. Theoretical transfer function of the three-junction
SQUID. The plot shows the induced qubit current Iq versus SQUID
bias current Isq, for four values of the junction size ratio �, with
device parameters as for Fig. 2. At points where dIq /dIsq=0, the
qubit will be insensitive to noise and dissipation from the SQUID.
The design value of �=1.7 ensures the existence of an insensitive
point that is not too close to the critical current of the SQUID. The
physical origin of decoupling is easily understood for �=2. At the
bias Isq�0 the Josephson inductances of the upper and lower
branches are equal, producing a symmetric flow of current and no
net flux to the qubit.
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the transfer function, a flux offset is applied at each SQUID
bias to keep the qubit frequency constant, removing any fre-
quency dependence of the dissipation. Figure 4�b� shows the
measured T1 data along with predictions from the
impedance-transformer model using the measured transfer
function. The lifetime T1 varies with SQUID bias as ex-
pected, increasing as the transfer function flattens and reach-
ing its maxima at the insensitive points dIq /dIsq=0. Beyond
these biases, the transfer function has a large derivative and
T1 drops sharply.16

A full prediction of T1 must add a parallel dissipation
channel to account for decay from other dissipation mecha-
nisms, especially at the insensitive point where there is no
dissipation from the transformer. Taking the maximum ob-
served value of 450 ns, consistent with dielectric loss due to
the a-Si:H dielectric of the device,17 we find excellent agree-
ment between the data and theory. Using the measured slope
dIq /dIsq, we find best agreement with shunt resistance
Rs=11 � transformed by the SQUID.

While the agreement between theory and experiment is
encouraging, there are two simplifying assumptions in the
impedance transformation model that merit discussion. First,
the model assumes that the coupling element is a purely
inductive circuit, which has a frequency-independent transfer
function. In the actual circuit, the SQUID capacitance leads
to frequency-dependent effects that drastically alter the trans-
fer function near the self-resonant frequency of the SQUID.
In our device the SQUID self-resonance frequency is
�15 GHz, well above the qubit frequency of 6.75 GHz. Nu-

merical calculations have shown that at 6.75 GHz, the
SQUID capacitance simply increases the transfer function
�dI2 /dI1�2 by a factor of �2. In the circuit, the resistance
from the 30 � shunt resistor parallel with the 50 � bias line
is effectively modified by this effect to give an effective
shunt resistance of �30 � 	50 �� /2�9 �. This agrees well
with the best fit value of the shunt resistance 11 �.

We note that the impedance transformation measured here
corresponds to �dI1 /dI2�2�105, and we have confirmed the
magnitude of this transformation to better than a factor of 2.

Secondly, the simple transformer theory predicts a diverg-
ing impedance 1 /Re Y2 at the extrema of the current transfer
function, where dIq /dIsq=0. In the experiment, we expect
divergences to be rounded off by higher-order processes. The
second-order effect can be calculated straightforwardly as
follows: the shunt resistor Rs produces a quantum noise
current18,19 with a one-sided spectral density given in the
limit T→0 by SI1

�f�=2hf /Rs for f 
0, and SI1
�f�=0 for

f �0, where h is Planck’s constant. The �complex� noise cur-
rent I1�t� produced by this resistor is transformed by the cou-
pler to a noise current at port 2 with Taylor expansion
I2�t�=const+ �dI2 /dI1�I1�t�+ �d2I2 /dI1

2�I1�t�2 /2. We calculate
the spectral density of this transformed current by inserting
the Fourier transform of I1�t�, assuming random phases of all
the frequency components. This gives for the transformed
spectral density

SI2
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The first term in this spectral density corresponds to the
simple linear impedance transformation model discussed
previously. The second term corresponds to dissipation due
to �nonlinear� down conversion, in which the photon from
port 2 at frequency f is converted to two photons at frequen-
cies f� and f� that are absorbed by the environment at port 1,
where f�+ f�= f . The second-order process will dominate at
the extrema of the transfer function where dI2 /dI1=0, and
lead to a finite lifetime.

The transformed spectral density may be evaluated for the
spectral density of a resistor, giving
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This calculation can be extended to arbitrary order by keep-
ing terms in the Taylor expansion of the transfer function.
For a resistor the integrals can be evaluated exactly yielding

Re Y2 =
1
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k=1
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k ! �2k − 1�!
dkI2
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k 
2�2hf2
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k−1

. �4�

The predicted lifetime due to the second-order process is
�100 	s, far from the limiting value of the lifetime ob-
served in our experiment. Thus, even accounting for second-
order noise processes, we find that the SQUID is completely
decoupled, as desired. The lifetime is thereby limited to the
observed 450 ns due to another loss mechanism, most likely
dielectric loss.
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FIG. 4. Measured SQUID transfer function and its effect on
qubit lifetime. �a� Qubit current Iq versus SQUID bias Isq, measured
as described in the text. Outside the range shown, the SQUID
switches prematurely, preventing reliable qubit operation. �b� Mea-
sured qubit lifetime T1 �dots� along with theoretical curves. The
dashed line is the prediction from the transfer function alone, while
the solid line adds to this a constant dissipation corresponding to a
lifetime of 450 ns. Best fit is for Rs=11 �.
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To illustrate the utility of this transformer theory, we con-
sider the case of dissipation arising from the microwave lines
used to control the qubit. Although coupling of microwaves
to the qubit is set by a coupling capacitor or mutual induc-
tance, in a real experimental device there is typically some
uncertainty in the exact coupling strength and resulting dis-
sipation due to, for example, complex microwave modes. If
the strength of the microwave coupling is simply measured
by knowing the strength of the microwave amplitude driving
the chip and the Rabi oscillation frequency, then the current
transformation can be determined for the real physical cou-
pling element. When the measured T1 is compared to predic-
tions from an impedance transformation calculated with this
theory, one can determine whether coupling via this environ-
mental mode dominates the observed decay. We emphasize
this theory allows comparison to the actual experimental sys-
tem, not just an idealized circuit model.

In conclusion, we have directly measured in a Josephson

phase qubit the current transfer function of a tunable three-
junction SQUID and its transformed dissipation. The varia-
tion in qubit lifetime as a function of SQUID bias was ana-
lyzed with a simple model based on the classical impedance
transformation from the measured SQUID-qubit transfer
function. The dissipation predicted by this model agrees
quantitatively with measurements for this non-linear cou-
pling element. As more sophisticated quantum circuits are
developed—for example in implementing tunable
coupling—having a simple method to calculate environmen-
tal dissipation will become increasingly important.
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